MIDL 2021

 
International Conference on
Medical Imaging with Deep Learning
5. bis 7. Juli 2021

Export 21 results:
Sortieren nach: [ Autor  (Desc)] Titel Jahr
Filter: Autor gleich Hansen, Lasse  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Weller D., Hansen L., Blendowski M., Heinrich M.P.
Transferring a Deep Cityscape Synthesis Approach to the Medical Domain
In: Buzug T.M., Handels H., Klein S. (eds.), Student Conference 2018, Medical Engineering Science, Medical Informatics and Biomediacal Engineering, Lübeck, Infinite Science Publishing, 91-94, 2018
S
Siebert H., Hansen L., Heinrich M.P.
Evaluating Design Choices for Deep Learning Registration Networks - Architecture Matters
In: Palm C., Deserno T.M., Handels H., Maier A., Maier-Hein K.H., Tolxdorff T. (eds.), Bildverarbeitung für die Medizin 2021, Regensburg, Informatik aktuell, Springer Vieweg, Wiesbaden, 111-116, 2021
Siebert M., Hansen L., Diesel J., Heinrich M.P.
Human Pose Estimation with Hourglass Network and Convolutional Autoencoder
In: Buzug T.M., Handels H., Klein S., Mertins A. (eds.), Student Conference 2019, Medical Engineering Science, Medical Informatics, Biomedical Engineering and Auditory Technology, Lübeck, Infinite Science Publishing, 141-144, 2019
K
H
Heinrich M.P., Hansen L.
Highly Accurate and Memory Efficient Unsupervised Learning-Based Discrete CT Registration Using 2.5D Displacement Search
In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, Cham, Springer, 12263, 190-200, 2020
Hansen L., Dittmer D., Heinrich M.P.
Learning Deformable Point Set Registration with Regularized Dynamic Graph CNNs for Large Lung Motion in COPD Patients
In: Graph Learning in Medical Imaging. GLMI 2019, Cham, Lecture Notes in Computer Science, Springer, 11849, 53-61, 2019
Hansen L., Blendowski M., Heinrich M.P.
Defence of Mathematical Models for Deep Learning based Registration
In: Tolxdorff T., Deserno T.M., Handels H., Maier A., Maier-Hein K.H., Palm C. (eds.), Bildverarbeitung für die Medizin 2020, Berlin, Informatik aktuell, Springer Vieweg, Wiesbaden, 32, 2020
Hansen L., Heinrich M.P.
Sparse Structured Prediction for Semantic Edge Detection in Medical Images
In: International Conference on Medical Imaging with Deep Learning, PMLR, 102, 250-259, 2019
Hansen L., Diesel J., Heinrich M.P.
Multi-Kernel Diffusion CNNs for Graph-Based Learning on Point Clouds
In: Computer Vision – ECCV 2018 Workshops, Cham, Lecture Notes in Computer Science, Springer, 11131, 4413, 456-469, 2019
Hansen L., Diesel J., Heinrich M.P.
Regularized Landmark Detection with CAEs for Human Pose Estimation in the Operating Room
In: Handels H., Deserno T.M., Maier A., Maier-Hein K.H., Palm C., Tolxdorff T. (eds.), Bildverarbeitung für die Medizin 2019, Lübeck, Informatik aktuell, Springer Vieweg, Wiesbaden, 178-183, 2019
G
Graf L., Mischkewitz S., Hansen L., Heinrich M.P.
Spatiotemporal Attention for Realtime Segmentation of Corrupted Sequential Ultrasound Data
In: Maier-Hein K., Deserno T., Handels H., Maier A., Palm C., Tolxdorff T. (eds.), Bildverarbeitung für die Medizin 2022, Heidelberg, Informatik Aktuell, Springer Vieweg, Wiesbaden, 235-240, 2022
Gillner M.L., Hansen L., Heinrich M.P.
Fast Pulmonary Fissure Detection in CT Scans using Deep Learning on Point Clouds
In: Buzug T.M., Handels H., Klein S., Mertins A. (eds.), Student Conference 2020, Medical Engineering Science, Medical Informatics, Biomedical Engineering and Auditory Technology, Lübeck, Infinite Science Publishing, 201-204, 2020
F
B

Studium

Medizinische Informatik
an der Uni Lübeck studieren

Informationen für
Interessierte
u. Einsteiger

Anschrift

Institutssekretariat
Susanne Petersen

Tel+49 451 3101 5601
Fax+49 451 3101 5604


Gebäude 64 (Informatik)

Ratzeburger Allee 160
23538 Lübeck
Deutschland