MIDL 2021

 
International Conference on
Medical Imaging with Deep Learning
5. bis 7. Juli 2021

Export 631 results:
Sortieren nach: Autor [ Titel  (Asc)] Jahr
Filter: Autor gleich Heinz Handels  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Ritter J., Schwarzmann M.D., Karstensen L., Grzegorzek M.
Comparison of deep reinforcement learning algorithms for Catheter-based interventions
In: Buzug T.M., Handels H., Hübner C., Klein S., Mertins A., Rostalski P. (eds.), Student Conference Proceedings 2021: Medical Engineering Science, Medical Informatics, Biomedical Engineering, Auditory Technology, Biophysics and Robotics and Autonomous Systems, Lübeck, Infinite Science Publishing, 313-316, 2021
Hahn C., Handels H., Nitschke M., Melchert U., Pöppl S.J.
Comparison of FMRI Data Analysis Techniques
In: 4. International Conference on Functional Mapping of the Human Brain, Montreal, Journal NeuroImage, Academic Press, 7, 598, 1998
Strenge P., Lange B., Grill C., Draxinger W., Danicke V., Theisen-Kunde D., Handels H., Bonsanto M.M., Hagel C., Huber R. et al.
Comparison of two optical coherence tomography systems to identify human brain tumor
In: Optical Coherence Imaging Techniques and Imaging in Scattering Media IV, Online Only, Germany, SPIE, 20, 2021
Handels H., Schößler T., Ehrhardt J., Pöppl S.J.
Computer Supported Cooperative 3D-Teleimaging in Java
In: Buzug T., Handels H., Holz D. (eds.), Telemedicine - Medicine and Communication, Kluwer Academic/PlenumPublishers, 3-12, 2001
Szabó K., Roß T., Handels H., Hodiamont L., Breuer U., Kühnel W., Pöppl S.J.
Computergestützte 3D-Rekonstruktion hoch aufgelöster Schnittbilder des Gefäßgefüges vom Organum vasculosum laminae terminales (OLVT)
In: 89. Versammlung der Anatomischen Gesellschaft, Marburg, Kühnel W. (ed.), Verhandlungen der Anatomische Gesellschaft (Supplement zum 176. Band des Anatomischen Anzeigers - Annals of Anatomy -), Gustav Fischer Verlag, 182-183, 1994
Handels H., Ehrhardt J., Peters E., Plötz W.
Computergestützte Planung von Hüftoperationen in virtuellen Körpern
In: Evers H., Glombitza G., Lehmann T., Meinzer H.P. (eds.), Bildverarbeitung für die Medizin 1999, Heidelberg, Informatik aktuell, Springer, Berlin, 177-181, 1999
Ververs S., Ulrich H., Ingenerf J.
Concept for a Consent-Based Access Model for HAPI FHIR Servers
In: Buzug T.M., Handels H., Klein S., Mertins A. (eds.), Student Conference 2019, Medical Engineering Science, Medical Informatics, Biomedical Engineering and Auditory Technology, Lübeck, Infinite Science Publishing, 293-296, 2019
Deppenwiese N., Ulrich H., Ingenerf J.
Connecting MOLGENIS to HL7 FHIR: Transformation from Questionnaires to EMX
In: Buzug T.M., Handels H., Klein S. (eds.), Student Conference 2018, Medical Engineering Science, Medical Informatics and Biomediacal Engineering, Lübeck, Infinite Science Publishing, 333-336, 2018
Kath N., Seidel A., Ingenerf J.
Connecting Old Devices Safely To The Cloud
In: Buzug T.M., Handels H., Klein S., Mertins A. (eds.), Student Conference 2020, Medical Engineering Science, Medical Informatics, Biomedical Engineering and Auditory Technology, Lübeck, Infinite Science Publishing, 277-280, 2020
Handels H., Färber M., Ehrhardt J.
Contour Extraction of Anatomical Structures in Medical Image Data using Atlases and Graph Search Algorithms
In: 8th Germany-Korea Joint Workshop on Advanced Medical Image Processing, Berlin, Charité Universitätsmedizin Berlin, Proceedings, 110-113, 2005
Rhein M., Schlichting S., Ingenerf J.
Converting HL7v2.6 to FHIR – One method on how to perform it –
In: Buzug T.M., Handels H. (eds.), Student Conference 2016, Medical Engineering Science and Medical Informatics, Lübeck, Infinite Science Publishing, 129-132, 2016
Strenge P., Lange B., Grill C., Draxinger W., Danicke V., Theisen-Kunde D., Handels H., Hagel C., Bonsanto M.M., Huber R. et al.
Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples
In: Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV, Online Only, United States, International Society for Optics and Photonics, 11630, 116301S, 2021
Baake M., Henke A., Kessner E., Ingenerf J.
Creating Reports with BIRT to support the Development Process of Medical Software
In: Buzug T.M., Handels H. (eds.), Student Conference 2017, Medical Engineering Science and Medical Informatics, Lübeck, Infinite Science Publishing, 171-174, 2017
Schmidt H., Handels H., Schößler T., Knopp U., Seidel G., Pöppl S.J.
Cypris – Java-basierte Telediagnostik und Teleimaging
In: Jäckel A. (ed.), Telemedizinführer Deutschland 2003, Medizin Forum, Bad Nauheim, 180-183, 2002
D
Schmidt H., Handels H., Schwidrowski K., Schmidt O., Hahn T., Burmeister O., Busse M., Maciak A., Pöppl S.J.
Das virtuelle Bildverarbeitungslabor JAMIP
In: GMDS 2003. Informatik, Biometrie und Epidemiologie in Medizin und Biologie, GMDS-Tagungsband, Abstraktnr.44/3,412-414, 2003
Hackmann M., Habermann J., Oberländer M., Prokosch H.-U., Mate S., Christoph J., Handels H., Ingenerf J.
Datenschutzkonforme IT-Lösung für multizentrische klinische Biobanking-Projekte
In: Stausberg J., Großer A., Haerting J., Knaup P., Plischke M., Timmer A., Haux R. (eds.), 57. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Braunschweig, ID261,336-338, 2012
Bouteldja N., Heinrich M.P.
Deep 3D Encoder-Decoder Networks with Applications to Organ Segmentation
In: Buzug T.M., Handels H., Klein S. (eds.), Student Conference 2018, Medical Engineering Science, Medical Informatics and Biomediacal Engineering, Lübeck, Infinite Science Publishing, 229-232, 2018
Siebert H., Heinrich M.P.
Deep Groupwise Registration of MRI Using Deforming Autoencoders
In: Tolxdorff T., Deserno T.M., Handels H., Maier A., Maier-Hein K.H., Palm C. (eds.), Bildverarbeitung für die Medizin 2020, Berlin, Informatik aktuell, Springer Vieweg, Wiesbaden, 236-241, 2020
Vogt N., Lorenz C., Brosch T., Heinrich M.P.
Deep learning for spinal centerline extraction
In: Buzug T.M., Handels H. (eds.), Student Conference 2017, Medical Engineering Science and Medical Informatics, Lübeck, Infinite Science Publishing, 229-232, 2017
Zhibin X., Heinrich M.P.
Deep learning-based image registration for voxel-based morphometry
In: Buzug T.M., Handels H., Hübner C., Klein S., Mertins A., Rostalski P. (eds.), Student Conference Proceedings 2021: Medical Engineering Science, Medical Informatics, Biomedical Engineering, Auditory Technology, Biophysics and Robotics and Autonomous Systems, Lübeck, Infinite Science Publishing, 275-278, 2021
Hagenah J., Heinrich M.P., Ernst F.
Deep Transfer Learning for Aortic Root Dilation Identification in 3D Ultrasound Images
In: Handels H., Deserno T.M., Maier A., Maier-Hein K.H., Palm C., Tolxdorff T. (eds.), Bildverarbeitung für die Medizin 2019, Lübeck, Informatik aktuell, Springer Vieweg, Wiesbaden, 198, 2019
Hansen L., Blendowski M., Heinrich M.P.
Defence of Mathematical Models for Deep Learning based Registration
In: Tolxdorff T., Deserno T.M., Handels H., Maier A., Maier-Hein K.H., Palm C. (eds.), Bildverarbeitung für die Medizin 2020, Berlin, Informatik aktuell, Springer Vieweg, Wiesbaden, 32, 2020
Krooß J., Brendel B., Köhler T., Heinrich M.P.
Denoising spectral CT images using parallel level sets
In: Buzug T.M., Handels H. (eds.), Student Conference 2016, Medical Engineering Science and Medical Informatics, Lübeck, Infinite Science Publishing, 207-210, 2016

Studium

Medizinische Informatik
an der Uni Lübeck studieren

Informationen für
Interessierte
u. Einsteiger

Anschrift

Institutssekretariat
Susanne Petersen

Tel+49 451 3101 5601
Fax+49 451 3101 5604


Gebäude 64 (Informatik)

Ratzeburger Allee 160
23538 Lübeck
Deutschland