Filter: Autor gleich Timo Kepp [Clear All Filters]
Unsupervised Segmentation of Wounds in Optical Coherence Tomography Images Using Invariant Information Clustering
In: (eds.), Bildverarbeitung für die Medizin 2022, Heidelberg, Informatik Aktuell, Springer Vieweg, Wiesbaden, 1-6, 2022
Unsupervised Non-correspondence Detection in Medical Images Using an Image Registration Convolutional Neural Network
In: (eds.), Biomedical Image Registration. WBIR 2022, Cham, Lecture Notes in Computer Science, Springer International Publishing, 13386, 3-7, 2022
Topology-Preserving Shape-Based Regression of Retinal Layers in OCT Image Data Using Convolutional Neural Networks
In: IEEE International Symposium on Biomedical Imaging, ISBI 2019, Venedig, Italien, 1437-1440, 2019

Segmentation of the dermal-epidermal junction in OCT image data using deep learning
In: (eds.), Student Conference Proceedings 2022: Medical Engineering Science, Medical Informatics, Biomedical Engineering, Auditory Technology, Biophysics and Robotics and Autonomous Systems, Lübeck, Infinite Science Publishing, 219-222, 2022
Segmentation of subcutaneous fat within mouse skin in 3D OCT image data using random forests
In: SPIE Medical Imaging 2018: Image Processing, Houston, Texas, United States, SPIE, 10574, 1057426-1-1057426-8, 2018

Segmentation of Retinal Low-Cost Optical Coherence Tomography Images using Deep Learning
In: SPIE Medical Imaging 2020, Houston, USA, 2020
Segmentation of Retinal Low-Cost Optical Coherence Tomography Images Using Deep Learning
In: (eds.), Bildverarbeitung für die Medizin 2020, Berlin, Informatik aktuell, Springer Vieweg, Wiesbaden, 183, 2020
Segmentation of Mouse Skin Layers in Optical Coherence Tomography Image Data using Deep Convolutional Neural Networks
Biomedical Optics Express, 10, 7, 3484-3496, 2019
Registrierung von nicht sichtbaren Laserbehandlungsarealen der Retina in Live-Aufnahmen des Fundus
In: (eds.), Bildverarbeitung für die Medizin 2017, Heidelberg, Informatik aktuell, Springer Vieweg, Berlin Heidelberg, 331-336, 2017
Random-Forest-basierte Segmentierung der subkutanen Fettschicht der Mäusehaut in 3D-OCT-Bilddaten
In: (eds.), Bildverarbeitung für die Medizin 2018, Erlangen, Informatik aktuell, Springer Vieweg, Berlin Heidelberg, 203, 2018
Mouse Model of Cold-Induced Localized Fat Loss (Selective Cryolipolysis)
In: Lasers in Surgery and Medicine, Wiley, 50, 19-20, 2018
Joint Non-Linear Registration and Level Set Segmentation of the Left Ventricle in 4D MR Image Data
In: (eds.), Student Conference 2013, Medical Engineering Science, Lübeck, Grin Verlag, 27-30, 2013
Joint Multi-Object Registration and Segmentation of Left and Right Cardiac Ventricles in 4D Cine MRI
In: (eds.), SPIE Medical Imaging 2014, Image Processing, San Diego, USA, 9034, 90340M, 2014
Interpretable Explanations of Black Box Classifiers Applied on Medical Images by Meaningful Perturbations Using Variational Autoencoders
In: (eds.), Bildverarbeitung für die Medizin 2019, Lübeck, Informatik aktuell, Springer Vieweg, Wiesbaden, 197, 2019
Interpretable Explanations of Black Box Classifiers Applied on Medical Images by Meaningful Perturbations using Variational Autoencoders
In: SPIE 10949, Medical Imaging 2019: Image Processing, San Diego, USA, 10949, 1094911-1-1094911-8, 2019

Improved SELFF-OCT using motion correction and artifact detection
Investigative Ophthalmology & Visual Science, 62, 8, 2527, 2021
Improved SELFF-OCT using motion correction and artifact detection
Investigative Ophthalmology & Visual Science, 62, 8, 2527, 2021
Image registration and appearance adaptation in non-correspondent image regions for new MS lesions detection
Frontiers in Neuroscience, 16, 2022
Evaluation verschiedener Ansätze zur 4D-4D-Registrierung kardiologischer MR-Bilddaten
In: (eds.), Bildverarbeitung für die Medizin 2015, Lübeck, Informatik aktuell, Springer, Berlin Heidelberg, 95-100, 2015
Epistemic and Aleatoric Uncertainty Estimation for PED Segmentation in Home OCT Images
In: (eds.), Bildverarbeitung für die Medizin 2022, Heidelberg, Informatik Aktuell, Springer Vieweg, Wiesbaden, 32-37, 2022
Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies
International Journal of Computer Assisted Radiology and Surgery, 2022
Combined Registration and Segmentation of the Left Ventricle in Cine MR Image Data
In: (eds.), 58. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Lübeck, Abstractband GMDS 2013, ID334:551-552, 2013
CNN-based joint non-correspondence detection and registration of retinal optical coherence tomography images
In: CARS 2021: Computer Assisted Radiology and Surgery Proceedings of the 35th International Congress and Exhibition, June 21-25, 2021, Munich, Germany, International Journal of Computer Assisted Radiology and Surgery, 16, 20-21, 2021