Cardiopulmonary resuscitation quality parameters from motion capture data using Differential Evolution fitting of sinusoids
Titel | Cardiopulmonary resuscitation quality parameters from motion capture data using Differential Evolution fitting of sinusoids |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Lins C., Eckhoff D., Klausen A., Hellmers S., Hein A., Fudickar S. |
Journal | Applied Soft Computing |
Date Published | 2019 |
Publication Language | eng |
ISSN | 1568-4946 |
Schlüsselwörter | Cardiac arrest, CPR training, Differential Evolution, Kinect, Motion capture, Resuscitation, Sinusoid regression model |
Abstract | Cardiopulmonary resuscitation (CPR) is alongside electrical defibrillation the most crucial countermeasure for sudden cardiac arrest, which affects thousands of individuals every year. In this paper, we present a novel approach including sinusoid models that use skeletal motion data from an RGB-D (Kinect) sensor and the Differential Evolution (DE) optimization algorithm to dynamically fit sinusoidal curves to derive frequency and depth parameters for cardiopulmonary resuscitation training. It is intended to be part of a robust and easy-to-use feedback system for CPR training, allowing its use for unsupervised training. The accuracy of this DE-based approach is evaluated in comparison with data of 28 participants recorded by a state-of-the-art training mannequin. We optimized the DE algorithm hyperparameters and showed that with these optimized parameters the frequency of the CPR is recognized with a median error of ±2.9 compressions per minute compared to the reference training mannequin. |
URL | http://www.sciencedirect.com/science/article/pii/S1568494619301413 |
DOI | 10.1016/j.asoc.2019.03.023 |