Filters: Author is Linder, Roland [Clear All Filters]
Classification of Patients with Pain Based on Neuropathic Pain Symptoms: Comparison of an Artificial Neural Network against an Established Scoring System
European journal of pain (London, England), 11, 4, 370-6, 2007
Die Mortalität von alten Menschen nach hüftgelenksnahen Femurfrakturen. Ein Vergleich der Zeiträume zwischen 1986 bis 1991 und 1992 bis 1997
Unfallchirurgie, 25, 3-4, 119-132, 1999
A Novel Method for Diagnosing Chronic Rhinosinusitis
In: 19th Congress of the European Rhinologic Society, Ulm, Abstract Book, S.114, 2002
Risikoanalysen – Voraussetzung für Benchmarking der Ergebnisqualität
In: 119. Kongress der Deutschen Gesellschaft für Chirurgie, Berlin, Kongressband 2002, Tagungs-CD, ID1231,S.887, 2002
Sacroiliitis, Hyperostosis Sternoclavicularis and Psoriasis Palmoplantaris in Monocygotic Twins
Arthritis and rheumatism, 42, 3, 574-6, 1999
Assessing Applicability of Ontological Principles to Different Types of Biomedical Vocabularies
Methods of information in medicine, 48, 5, 459-67, 2009
Querschnittsbereich „Epidemiologie, medizinische Biometrie und medizinische Informatik“ im Studiengang „Humanmedizin“ der Universität zu Lübeck
In: Proc. der GMDS-Jahrestagung, Sept. 2005 in Freiburg, 2005
Ontological Principles Applied to Biomedical Vocabularies
In: (eds.), EFMI Special Topic Conference „Integrating Biomedical Information: From eCell to ePatient”, Timisoara, Romania, Berlin: AKA-Verlag, 3189-334, 2006
Das universelle Neugeborenenhörscreening in Schleswig-Holsteion (UNHS-SH)
In: 6. Deutscher Kongress für Versorgungsforschung und 2. Nationaler Präventionskongress, Dresden, Präventation und Gesundheitsförderung, Band 2, Ergänzungsband 1, 113-4, 2007
Psychoakustische Skalierung elektroakustischer Heiserkeitsparameter
(eds.), Aktuelle phoniatrisch-pädauiologische Aspekte 2007/2008, Median-Verlang, Heidelberg, 2007
Optimierung der Konvergenzgeschwindigkeit von Backpropagation
In: 20. DAGM Symposium, Stuttgart, Springer, Berlin u.a., 175-182, 1998
Psychoakustische Skalierung akustischer Heiserkeitsparameter einschließlich GNE mittels Künstlicher Neuronaler Netze
In: (ed.), Aktuelle phoniatrisch-pädaudiologische Aspekte 2002/2003, Median-Verlag, Heidelberg, 85-89, 2002
Artificial neural network-based classification to screen for dysphonia using psychoacoustic scaling of acoustic voice features.
Journal of voice : official journal of the Voice Foundation, 22, 2, 155-63, 2008
Generation of classification criteria for chronic fatigue syndrome using an artificial neural network and traditional criteria set.
In vivo (Athens, Greece), 16, 1, 37-43, 2002
Dokumentation und Kommunikation im Gesundheitswesen: eine Einführung
E-Learning Modul im Vertiefungsbereich "Natur und Technik" des Diplomstudiengangs „Gesundheitswissenschaften“ der University of Applied Sciences sowie im Verbundprojekt „Hochschulen für Gesundheit“, University of Applied Sciences, Hamburg, 2003
About the Capabilities of Artificial Neural Networks in Body Composition Research
In: Sixth International Symposium “In Vivo Body Composition Studies”, Rome, Italy, Acta Diabetologica, 39, 133, 2002
ACMD: A Practical Tool for Automatic Neural Net Based Learning
In: (eds.), Second International Symposium on Medical Data Analysis (ISMDA), Madrid, Lecture Notes in Computer Science, Medical Data Analysis, Springer Berlin Heidelberg, 2199, 168-173, 2001
Artificial neural networks, classification trees and regression: Which method for which customer?
Database Marketing & Customer Strategy Management, 11(4), 344-356, 2004
UNHS-SH: ein multidisziplinärer Ansatz für das Neugeborenenhörscreening in Schleswig-Holstein. Aktuelle phoniatrisch-pädaudiologische Aspekte
In: 22. Wissenschaftliche Jahrestagung der Deutschen Gesellschaft für Phoniatrie und Pädaudiologie, 2005
Artificial Neural Networks for Classifying Olfactory Signals
Studies in health technology and informatics, 77, 1220-5, 2000
Use of an artificial neural network to predict cancer development in patients with inflammatory myopathy: comment on the letter by Selva O'Callaghan et al.
Arthritis and rheumatism, 48, 4, 1168-9;authorreply1169-70, 2003
An Artificial Neural Network Is Capable of Predicting Odour Intensity
Pol J Environ Stud, 14(4), 477-481, 2005
Speeding up Backpropagation Learning by the APROP Algorithm
In: Second International ICSC Symposium on Neural Computation, Berlin, Proceedings CD, 2000
A new neural network approach classifies olfactory signals with high accuracy
Food Quality and Preference, 14, 5-6, 435-440, 2003
Food Quality Assurance Applying a Sophisticated Neural Network to Olfactory Signals
In: 6th Sensometrics, Dortmund, Tagungsband, 2002
Two Models for Outcome Prediction - a Comparison of Logistic Regression and Neural Networks
Methods of information in medicine, 45, 5, 536-40, 2006
Tracking Children for the Newborn Hearing Screening in Northern Germany
In: MEDINFO 2007, Brisbane, Australien, Proceedings of the 12th World Congress on Health (Medical) Informatics, Tagungs-CD1237-1250, 2007
How to Automate Neural Net Based Learning
In: (ed.), Second International Workshop MLDM 2001, Leipzig, Lecture Notes in Computer Science, Machine Learning and Data Mining in Pattern Recognition, Springer Berlin Heidelberg, 2123, 206-216, 2001
Klassifikation von Signalen einer elektronischen Nase
Biomedizinische Technik / Biomedical Engineering, 45, 194-195, 2000
aXess: Ein Autorentool für die Pflege von XML-Content
In: 49. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS) e.V., Innsbruck/Tirol, Tagungsband, 3Seiten, 2004
The Capabilities of Artificial Neural Networks in Body Composition Research
Acta diabetologica, 40 Suppl 1, S9-14, 2003
Backprop, RPROP, APROP: Searching for the best learning rule for an electronic nose
In: Fourth International Workshop 1999, Magdeburg, Neural Networks in Applications '99, 69-74, 1999
Predicting Intracellular Water Compartment for Healthy Italiens Using Artificial Neural Network Analysis
In: Sixth International Symposium “In Vivo Body Composition Studies”, Rome, Italy, Acta Diabetologica, 39, 137, 2002
The 'Subsequent Artificial Neural Network' (SANN) Approach Might Bring More Classificatory Power to ANN-based DNA Microarray Analyses
Bioinformatics, 20, 18, 3544-3552, 2004
Präoperative Planung von Primär- und Revisions-TEP-Operationen
In: 46. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Köln, Informatik, Biometrie und Epidemiologie, 32, 218, 2001
Künstliche Neuronale Netze in der Medizin
Forum der Medizin-Dokumentation und Medizin-Informatik (mdi) , 5(4), 112-118, 2003
Microarray Data Classified by Artifical Neural Networks
In: (ed.), Microarrays, Methods in Molecular Biology, The Humana Press Inc., Totowa, NJ, USA, 345-372, 2007
Microarray Data classified by Artificial Neural Networks
Methods in molecular biology (Clifton, N.J.), 382, 345-72, 2007
Serum luteinizing hormone, follicle-stimulating hormone and oestradiol pattern in women undergoing pituitary suppression with different gonadotrophin-releasing hormone analogue protocols for assisted reproduction
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology, 20, 4, 188-94, 2005
A Novel Method for Diagnosing Chronic Rhinosinusitis based on an Electronic Nose
Anales otorrinolaringológicos ibero-americanos, 30, 5, 447-57, 2003
Artificial Neural Network Analysis: A Novel Application for Predicting Multisite Bone Mineral Density for Healthy Italiens
In: Sixth International Symposium “In Vivo Body Composition Studies”, Rome, Italy, Acta Diabetologica, 39, 137-138, 2002
Predicting Type 2 Diabetes Using an Electronic Nose-based Artificial Neural Network Analysis
Diabetes, nutrition & metabolism, 15, 4, 215-21, 2002
Artificial Neural Network Analysis: A Novel Application for Predicting Site-Specific Bone Mineral Density
Acta diabetologica, 40 Suppl 1, S19-22, 2003
Predicting the Intracellular Water Compartment using Artificial Neural Network Analysis
Acta diabetologica, 40 Suppl 1, S15-8, 2003
Interpretation of Mössbauer spectra in the energy and time domain with neural networks
Hyperfine Interactions, 126, 1/4, 421-424, 2000